Rehabilitation after Amputation

Lisa U. Pascual, M.D.
Chief, Rehabilitation Services
San Francisco General Hospital and Trauma Center
Laguna Honda Hospital and Rehabilitation Center
Clinical Professor
Department of Orthopaedic Surgery
University of California, San Francisco

June 7, 2016

Overview

• US Statistics for Limb Loss
• Vascular Causes
• Traumatic Causes
• Prevention of Limb Loss
• Rehabilitation and Pre-Prosthetic Care Following Surgery
• Conclusion

Limb Loss: US Statistics

185,000 Amputations/year (upper and lower extremity)
• 2009: Hospital Costs: > $8.3 Billion
 • Does not include rehabilitation or prosthetic costs
• 2012: at least 1.9 million people living with limb loss

Limb Loss: US Statistics

• Vascular Disease: 54%
• Trauma: 45%
• Malignancy: <2%
Etiology of Amputation

Limb Loss: US Statistics

Lower Extremity Peripheral Artery Disease (PAD)
- 8 million Americans
- 50% asymptomatic
- Most severe manifestation: severe loss of circulation to a limb resulting in
 - Increased risk of limb loss
 - Increased risk of mortality

Vascular Disease

Limb Loss: Vascular Disease

Peripheral Vascular Disease
- Circulation disorder
 - Blood vessels distant from the heart and brain
- Peripheral Artery Disease
 - Most common
 - Narrowed arteries decrease blood flow to arms and legs

Limb Loss: Peripheral Vascular Disease

Symptoms:
To legs and feet:
- Painful cramping
- Achiness
- Fatigue
- Burning
- Claudication
Limb Loss: Peripheral Artery Disease (PAD)

Risk Factors
- > 50 years of age
- Family history of PAD, heart disease or stroke
- Heart disease or stroke
- Smoking
- Diabetes
- Obesity
- Sedentary Lifestyle
- High cholesterol
- High blood pressure

Limb Loss: Diabetes

Diabetes can result in:
- Impaired circulation in small blood vessels
- Increased risk of peripheral artery disease
- Neuropathy
 - Increases chance of damage to the skin
 → foot ulcers
 These factors increase the risk of amputation

Limb Loss: Diabetes

- 15 x more likely than the general population to undergo amputation
- Leading cause of amputation in lower limb

Limb Loss: Prevention

- 85% of lower extremity amputations are preceded by a foot ulcer
 - Prevention:
 - Teach patients to manage their diabetes and inspect their feet
 - Follow patients closely for evidence of skin breakdown
 - Too difficult for just the primary care MD to do alone → interdisciplinary team care
Interdisciplinary Care: Dysvascular Disease (UK)

Reduction in Diabetic Amputations Over 11 Years in a Defined U.K. Population

Sustained reduction in major amputations in diabetic patients
628 amputations in 461 patients in a defined population over a 20-year period

Interdisciplinary Care: Dysvascular Disease (Sweden)

Limb Loss: US Statistics

Hope for the Future:
- In the US, multiple organizations are publishing evidenced based guideline for the prevention and treatment of those at risk for limb loss to decrease the incidence of amputation.
Limb Loss: US Statistics

Etiology of Amputation

- 45% Trauma

Limb Loss: Traumatic Amputations U.S.

- Mechanism of Injury: blunt trauma
 - Motor vehicle crash: Upper extremity amputations
 - Motorcycle crash, pedestrian vs. auto: Lower extremity amputations
- Males: 76.7%
- Mean age: 36.1
- Most common level: Transtibial (below the knee)

Limb Loss: US Statistics

- Prevalence in 2005: Projected to double by year 2050 (>700,000 to 1,325,000)
- Increase impacted by increase in life expectancy

Limb Loss: Functional Limb Service

Pasquina, et al
- Teamwork
- Critical Specialties
- Peer Support
- Community Reintegration
To provide comprehensive care of patients undergoing amputation, it really takes a village:

Zuckerberg San Francisco General Hospital and Trauma Center

Level I Trauma Center

Functional Limb Service

- PM&R
- Orthopaedic Surgeons
- Vascular Surgeons
- Trauma Surgeons
- Plastic Surgeons
- Podiatrists
- Prosthetists
- Physical Therapists
- Occupational Therapists
- Nurses
- Team Coordinator

Nutritionist
- Infectious Disease
- Endocrinologists
- Social Services / Case Managers
- Vocational Rehab Counselor
- Program Facilitator

Functional Limb Service

- **Goals:**
 - Prevention
 - Early identification and treatment of at-risk limbs
 - Utilize team input to maximize functional outcomes
 - Provide patients and caregivers with education that will help with decision making and recovery
Limb Loss: Functional Limb Service (FLS)

- Review clinical cases
- Provide inpatient consultation
- Provide outpatient follow up in an interdisciplinary clinic
- Coordinate peer mentor and support groups for patients at risk for limb loss or who have undergone amputation surgery
- Constantly assess the need for service improvements

Before surgery

- Team assessment
 - Surgical considerations
 - Functional considerations
 - Patient Education
 - Informed decisions
 - Guide expectations

Optimizing recovery after surgery
Post Operative Rigid Dressing

Advantages:
- Reduction of swelling

Disadvantages:
- May not be for residual limbs where wounds need to be closely monitored

Immediate Post-Operative Prosthesis (IPOP)

Advantages:
- Reduction of swelling
- Early partial weightbearing (up to 60 lbs)
- Psychological benefit

Considerations:
- Requires patients to be compliant with use
- Not optimal for diabetic patients

Positioning

Hip Extension
Lay on stomach. Lift leg toward back, while keeping knee straight. Lower back should not move.
Positioning

- Keep knee extended while in wheelchair

Serial casting

Positioning

- 10-15 degrees contracture
- Ready for fitting
Wound Care:
- Monitor Closely
- Keep suture line clean and dry

Pre-prosthetic Fit:
- Monitor suture line
- Clean suture line

Post-Operative Care:
- Shrinker sock
 - Reduces swelling and pain
- Limb Guard
 - Protects limb
 - Minimizes risk of contracture

Physical Therapy:
Rehabilitation Should Start as Early as Possible
- PT:
 - Bed mobility
 - Transfers
 - Instruction on ROM, strengthening
 - Pre-gait/Gait activities
- Ideally, should begin pre-amputation

http://www.amputee-coalition.org/resources/after-amputation-surgery/
Occupational Therapy

Rehabilitation Should Start as Early as Possible

OT:
- Bed mobility
- Transfers
- Strengthening
- Activities of Daily Living
- Wheelchair mobility
- Equipment assessment

Transitions from Hospital to Home

- Transferring in/out of wheelchair
- Use of a front wheeled walker
- Household distances
- Navigating stairs
Outpatient Follow Up

- Follow up in outpatient clinic (1-2 weeks after discharge)
- Sutures are removed (3-4 weeks after surgery)
- Massage suture line
- Ongoing shrinker sock use for residual limb shaping

http://www.amputee-coalition.org/resources/after-amputation-surgery/

Volume Changes with Shrinker Sock Use

3 weeks → 8 months
Shape and size of limb directly affects fit of socket

Transitions from Hospital to Home

Surgery → Rehab → Inpatient Rehab → Home → Outpatient Rehab

Assessment of Prosthetic Candidacy + Rehab
Residual limb wound healing and shaping

Prosthetic Candidacy: Can the patient safely and successfully use a prosthesis?

What factors are considered?
- Prior functional status
- Medical comorbidities (other illnesses)
- Cognition
Prosthetic Candidacy

Energy Cost of Ambulation

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Increase (%)</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prosthesis, with crutches</td>
<td>50</td>
<td>4.5</td>
</tr>
<tr>
<td>Unilateral BK with prosthesis</td>
<td>9-28</td>
<td>3.3-3.8</td>
</tr>
<tr>
<td>Unilateral AK with prosthesis</td>
<td>60-85</td>
<td>4.2-5.8</td>
</tr>
<tr>
<td>Bilateral BK with prosthesis</td>
<td>41-100</td>
<td>4.2-6.0</td>
</tr>
<tr>
<td>BK plus AK with prosthesis</td>
<td>70</td>
<td>4.7</td>
</tr>
<tr>
<td>Bilateral AK with prosthesis</td>
<td>20-80</td>
<td>3.1-5.8</td>
</tr>
<tr>
<td>Unilateral hip disarticulation with prosthesis</td>
<td>50-55</td>
<td>4.2-5.8</td>
</tr>
<tr>
<td>Hemipelvectomy with prosthesis</td>
<td>125</td>
<td>5.5-7.5</td>
</tr>
</tbody>
</table>

*Normal Gait: 3 METs
Waters, Perry, et al. 1976*

- Transtibial Amputation: 3.3-3.8 METS (9-28% increase in energy)

- Hemipelvectomy: 6.75 METS (125% increase) = Jogging

- Prosthetic Candidacy: K Levels and Function

<table>
<thead>
<tr>
<th>K-Level</th>
<th>Description</th>
<th>Possible Assemblies</th>
<th>Knee Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>Not eligible for prosthesis</td>
<td>None</td>
<td>Not eligible for prosthesis</td>
</tr>
<tr>
<td>K1</td>
<td>External foot, GACH foot or single axis ankle</td>
<td>Single-axis, single-axis or dynamic-response knee</td>
<td>Single-axis or dynamic-response knee</td>
</tr>
<tr>
<td>K2</td>
<td>Flexible foot and multi-axis ankle</td>
<td>Single-axis or dynamic-response knee</td>
<td>Single-axis or dynamic-response knee</td>
</tr>
<tr>
<td>K3</td>
<td>Partially or fully ambulating with variable cadence or dynamic response</td>
<td>Partially ambulatory or fully ambulatory</td>
<td>Partially ambulatory or fully ambulatory</td>
</tr>
<tr>
<td>K4</td>
<td>Any ambulatory foot system appropriate</td>
<td>Any ambulatory foot system appropriate</td>
<td>Any ambulatory foot system appropriate</td>
</tr>
</tbody>
</table>

- Jogging
Conclusion:

• The number of individuals living with limb loss is increasing
• Prevention of vascular-related limb loss through interdisciplinary care is promising
• Team approach to care is crucial to help patients who have undergone amputation through the process of:
 • Preparing for prosthetic fitting
 • Setting and achieving their functional goals

Thank You