Management of Articular Cartilage Lesions

C. Benjamin Ma, MD

Associate Professor in Residence
Chief, Shoulder and Sports Medicine
University of California, San Francisco
Department of Orthopaedic Surgery

Disclosures

- Research
 - Moximed
 - Zimmer
- Orthopaedic Surgeon
 - Enjoys operating
 - Like to see patient do well after surgery

why do we fix articular lesions?

How come my knee hurts?
Joint pain

- Different causes
 - Trauma with fracture
 - Ligament tear
 - Overuse
 - Infection
 - Muscle weakness/imbalance
 - Cartilage wear and injuries

Treatment of Articular Injuries

- Age
- Activity
- Symptoms
- Need

Articular Cartilage Injuries

How do you diagnose articular cartilage injuries?
- Physical examination
- X-rays
- MRI
- Arthroscopic surgery
Knee surgery—Arthroscopic evaluation

Arthritic knee

Treatment of Articular Injuries
- Palliative
 - debridement
- Reparative
 - Marrow stimulation
- Restorative
 - Osteochondral plugs
 - Cartilage Transplantation
- Realignment
- Replacement

Treatment
- Palliative
- Lavage/Debridement
 - 52-74% Good
- Mechanical
 - Shaver
 - Curette
 - Rongeur
- Thermal / Radiofrequency
- Clean up Surgery
Abrasion Chondroplasty

Clean up surgery

- Multiple randomized controlled study
 - Arthroscopic debridement vs

 CLEAN UP SURGERY DOESN’T WORK!

 Sihvonen et al, New Eng J Medicine 2013
 Kirkley et al, New Eng J Medicine 2008

Microfracture

- Rough Surfaces for Blood Clot Attachment
- Access to Mesenchymal Stem Cells and Growth Factors
- No weight on leg
- Continuous Passive Motion machine 6 hours/day
- Fibrocartilage

Steadman JR et al, Arthroscopy
Microfracture

Mosaicplasty / OATS
Bulk Allograft
Autologous cartilage transplantation - ACI

Restorative Treatment

- Mosaicplasty / OATS
- Bulk Allograft
- Autologous cartilage transplantation - ACI

Meyers et al. JBJS, 1989

Osteochondral Plugs

Advantages

- Intact “ORGAN”
- Duplicates Complex Multilayer Structure
- May Duplicate Normal Biomechanical Role
- Rapid Healing & Incorporation of Bone

Hangody et al, AJSM 2010
Osteochondral Plugs

- Harvest within 24° of Asystole
- Aseptic Processing
- Bacterial / PCR Testing
- “Fresh” 24°-7d
- “Prolonged-Fresh” 7-42d

Mosaicplasty

Bulk Osteochondral Allograft
Osteochondral allograft

Growing cells – Autologous Chondrocytes Implantation

- Smith, 1965 – 1st Isolation & Culture Chondrocytes
- Peterson, 1984 – Autologous Cultured Chondrocytes Rabbit Patella Defects
 - Hyaline-Like Cartilage -
 - 82% of ACI & 18% of controls
- Peterson, 1987 – Gothenburg – 1st Human ACI
- > 10,000 ACI’s Done Since 1987
ACI - Technique

- Biopsy & Grow
- Open/Mini-Open
- Periosteal Patch
- Suture Patch
- Seal
- Inject Cells
- Complications
 - Graft hypertrophy
 - Viability/Fill

Brittberg M et al, NEJM 1994

2nd Generation

Scaffolds

- Biocompatible
- Biodegradable
- Not Cytotoxic
- Mechanically Stable
- Hold Cells
- Support Cells

M.A.C.I.

- Membrane / Matrix
- Autologous
- Chondrocyte Implantation
- Spain
- Guillen-Garcia

Zak L et al, AJSM 2012
M.A.C.I.

- 34 Knees
- Start Feb 2002
- Multiple Associated Procedures
- Scaffolds
- No Suturing
- No Periosteum

Not FDA Approved
Used in Asia and Europe

3rd Generation

Neocart™

- FDA Phase III Trial
- UCSF part of Phase I and II
- Autologous Cartilage Disc

3rd Generation - Neocart

- Implant Neocart – Cartilage Disc
- Size To Defect
- Scaffold ‘pressurized’ to preserve integrity of cells
- Fix: Proprietary Glue
- No Sutures
- No Arthroscopy / Arthroscopic Implant

Implantation of Neocart: Three-dimensional Autologous Cartilage Patch

Crawford D et al, JBJS 2012
Neocart

- Phase III clinical trial
- Not approved for clinical use
- UCSF is part of the research group
- Focal cartilage injuries
- Not for generalized cartilage wear

Treatment of Articular Injuries

- Palliative
 - Debridement
- Reparative
 - Marrow stimulation
- Restorative
 - Osteochondral plugs
 - Cartilage Transplantation
- Realignment
- Replacement

Realignment

Tibiofemoral joint

- Long-standing hip to ankle views
 - Mechanical and anatomic axis
 - Compared with contralateral normal side
 - Use 66% of tibial plateau as landmark for ‘normal’ alignment
Treatment

- History of lateral meniscus surgery
- Lateral sided knee pain
- Alignment
 - Valgus 8 degrees
 - Distal femoral osteotomy

Ligament Instability

- 24 yo status post ACL reconstruction MM
- Avid soccer player
 - Wants to continue high level soccer
- 1A Lachman
- Minimal pivot glide - no clinical sx
- Medial joint line tenderness

Preop radiographs
Treatment

- Medial compartment breakdown
 - Cartilage resurfacing
- Medial meniscectomy
 - Transplant - competitive soccer
- ACL insufficiency
 - Biplanar osteotomy
- Microfracture medial femoral condyle
- Biplanar osteotomy
 - Decreasing tibial slope
 - Medial opening wedge
Treatment of Articular Injuries

- Palliative
 - debridement
- Reparative
 - Marrow stimulation
- Restorative
 - Osteochondral plugs
 - Cartilage Transplantation
- Realignment
- Replacement

Unicompartmental Knee Replacement

- Disease in isolated compartment
- Lower demand patient
- Partial Knee replacement
- Maintain range of motion

Unicompartmental Knee Replacement

- Best for older patients
- Sedentary lifestyle
- Higher failure rates with high BMI
- Good operation
- 90% successful at 10 years
- Isolated compartment

Bonutti et al J Arthroplasty 2011

Total Knee Replacement

- One of the most successful orthopaedic operations
- 90-95% successful at 10 years
- Limited range of motion
- Older age
Total Knee Replacement

- Estimated 4.0 million patients in US currently have TKR
- 4.2% of the population age 50 or older
- Prevalence higher for female (4.8%) than male (3.4%)
- 161.5% increase over the past 20 years

Weinstein et al, JBJS 2013

Complications of TKR

- Infection
- Loosening
- Dislocation

Revision Knee Replacement

- Results not as good as primary total knee replacement
- Higher infection rate
- Higher revision rate

Hossain et al, CORR 2010

New Technology

- New methods of detection
- Early detection of cartilage injuries
- Prior to xray changes
T1 rho imaging

- Detection of loss of proteoglycan – cartilage matrix
- Detect changes before cartilage loss
- Detect changes before bony changes

T1rho in controls vs. OA

A healthy volunteer

An OA patient

• T1ρ values were elevated in all regions of the knee

Application – 38 yo acute ACL tear

Lozano et al, JBJS 2006

Arthroscopic video
New Treatment

- Stem cell injection
 - No science
 - Doesn’t work
 - Kobe Bryant
- PRP (platelet rich plasma)
 - Hines Ward
 - No data
 - Doesn’t work

New Treatment

- Vitamin
- Supplements
- Massages?

Realignment Procedures

- High tibial osteotomy
- Realigning the limb
- Redistribute the load

Mechanical Axis and Knee Loads

- Valgus position (62 and 75%)
 - Increase lateral compartment contact pressure over medial compartment pressure 30 and 40%
Is Shifting the Weight to the Lateral Side Good?

- Increase pressure 30-40%
- Increase wear to lateral compartment
- Longevity limited by lateral compartment wear
 - 7-9 years even in well done realignment procedures

Is there any ability to load share?

- New technology to ‘offload’ instead of shifting the load
- More effective treatment may be joint “unloading”
 - Device to take up load instead of shifting load

Loadsharing - KineSpring

How The Implant Operates

- The spring absorbs load from the joint during each gait cycle
- As the knee extends, the absorber compresses and absorbs joint overload
- As the knee flexes, the absorber lengthens and becomes passive
Force Reduction Up to 13 kg

- **Medial Compartment**

 - Untreated Knee
 - KineSpring® System Knee

Intra-articular loading, simulated gait cadaver study

“My Initial Reactions”

- Surely, the Screws Will Break!
- It Looks Too Bulky!

<table>
<thead>
<tr>
<th>Load Supported</th>
<th>Flexion Angle (°)</th>
<th>Unloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee</td>
<td>0°</td>
<td>13 kg (20 lbs) (maximum)</td>
</tr>
<tr>
<td>Absorber</td>
<td>0 - 30°</td>
<td>>0 kg</td>
</tr>
<tr>
<td></td>
<td>>30°</td>
<td>0 kg</td>
</tr>
</tbody>
</table>

Unlike HTO or fracture plate components, absorber will not bear full load.

Data on file at Moximed.

Intra-articular loading, simulated gait cadaver study

“My Initial Reactions”

- Surely, the Screws Will Break!
- It Looks Too Bulky!

<table>
<thead>
<tr>
<th>Load Supported</th>
<th>Flexion Angle (°)</th>
<th>Unloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee</td>
<td>0°</td>
<td>13 kg (20 lbs) (maximum)</td>
</tr>
<tr>
<td>Absorber</td>
<td>0 - 30°</td>
<td>>0 kg</td>
</tr>
<tr>
<td></td>
<td>>30°</td>
<td>0 kg</td>
</tr>
</tbody>
</table>

Unlike HTO or fracture plate components, absorber will not bear full load.

Data on file at Moximed.

Intra-articular loading, simulated gait cadaver study
Treatment of Articular Cartilage Lesions

- Made significant progress in cartilage resurfacing
 - Restorative
 - Cell-based treatment
- Improvement in longevity of knee replacement
- Meet the patient’s need and symptoms